Linux aarch64 中断处理全流程分析 1周前 评论
Linux aarch64 中断处理全流程分析

深入解析了Linux中断系统的核心概念,包括硬件中断号(hwirq)与虚拟中断号(virq)的区别、各类中断号在中断控制器中的分配和映射关系,以及物理与逻辑中断线的实际意义。强调Linux内核通过virq实现统一管理,解决硬件中断号冲突,展示了复杂中断结构在SoC中的连接方式,为开发者理解和排查多级中断控制器的中断流程问题提供理论知识的指导。

【深入内核】中断真的不能睡眠吗? 2周前 1 条
【深入内核】中断真的不能睡眠吗?

“中断上下文不能睡眠”是Linux内核开发的底层铁律,源于中断执行期间CPU未切换进程,无法被调度器感知和管理。文章通过深入解析CPU执行模型、调度机制以及arm64中断流程,阐明中断上下文不具备调度实体特征、没有task_struct、不能被调度,也无法安全使用睡眠相关API和某些锁。这样设计避免

[BPF] 第001篇 使用 eBPF 监控 Linux 内核内存分配 4周前 评论
[BPF] 第001篇 使用 eBPF 监控 Linux 内核内存分配

深入探索eBPF技术,该方案通过非侵入式方式在Linux内核中高效运行自定义字节码,实现对kmalloc内存分配的实时监控,兼具安全性和灵活性。文章详细展示了内核态插桩与用户态应用的协同原理与代码实践,支持多维过滤和实用输出,适合于系统性能分析及生产环境部署,为内核行为追踪和资源优化提供了极具价值的案例

【深入内核】ARM64下的内核栈 5月前 评论
【深入内核】ARM64下的内核栈

本文深入探讨了Linux内核栈的运作机制。内核栈是进程生命周期中不可或缺的部分,用于保存用户态和内核态之间的上下文信息。文章解释了内核栈如何通过`task_struct`结构体与进程关联,以及`pt_regs`和`cpu_context`在任务切换和异常处理中的关键作用。此外,文章还详细说明了ARM64架构中`sp_el0`寄存器如何直接存储当前任务的`task_struct`指针,从而优化了栈指针的使用。文章最后讨论了内核栈的配置和栈回溯技术,为内核稳定性问题的分析提供了宝贵的见解。

【深入内核】内核printk原理介绍 5月前 评论
【深入内核】内核printk原理介绍

printk 是 Linux 内核用于输出调试信息的接口,通过 log buffer 存储日志信息,并在系统出现问题后记录错误信息。文章详细介绍了 printk 内核框架,包括 printk 接口的作用、log buffer 的设计和初始化、log buffer 的数据结构,以及 printk 函数的流程。文章还分析了 printk ring buffer 的写入过程,包括 prb_reserve、printk_sprint 和 prb_commit 等函数的核心作用。最后,文章通过 trace32 读取 printk_ringbuffer 在内存中的数据,并解释了 printk_ringbuffer 在内存中的增长方向,使读者对环形缓冲区的整体印象更加清晰。

[Linux进程调度] 第001篇 一篇文章全面了解Linux进程调度 6月前 评论
[Linux进程调度] 第001篇 一篇文章全面了解Linux进程调度

进程调度是操作系统确保进程高效运行的核心机制,决定哪个处于运行状态的进程能够投入运行以及运行时间。Linux 2.6内核引入了内核抢占特性,允许多个执行流交叉执行。进程和线程的生命周期包括创建、就绪、执行、阻塞和终止状态。多任务操作系统分为非抢占式和抢占式,后者如Unix系统允许调度程序强制挂起进程,分配执行机会给其他进程。Linux进程调度围绕`task_struct`数据结构,包含进程状态、优先级、时间片、调度策略等信息。调度器类负责管理不同类型的进程,如完全公平调度(CFS)、实时调度等。CFS使用红黑树组织进程队列,根据虚拟运行时间调度,保证公平性。实时调度类包括循环进程和先进先出进程,分别采用时间片轮转和先进先出机制。内核抢占允许在特定条件下中断当前进程,执行更高优先级的任务。SMP调度支持负载均衡、CPU亲和性设置、进程迁移等功能。

任务调度器:从入门到放弃(二) 6月前 评论
任务调度器:从入门到放弃(二)

这篇文章主要讨论了Linux内核中的线程调度策略,特别是针对多核异构架构(如Big.Little)的任务分配问题。作者分析了CFS(完全公平调度器)的工作原理,包括如何根据线程的优先级和虚拟运行时来分配CPU资源。文章指出,调度器是基于事件驱动的,而不是实时监控所有线程的状态,这导致了调度策略的实际效果与理论模型之间存在差异。 此外,文章还介绍了两种负载跟踪模型:PELT和WALT。PELT考虑了所有过去运行时间的负载,而WALT则将时间划分为窗口,通过统计线程在每个窗口的运行时间来计算负载。两种模型各有优缺点,PELT可能对非周期性负载不够敏感,而WALT可能会因为窗口划分而低估某些负载。 最后,作者提出了一个关于任务分配的问题:在Big.Little架构下,是否应该严格遵循“大任务跑大核,小任务跑小核”的原则。文章指出,这取决于任务的负载和CPU的能效曲线,并非所有情况下都适用。

任务调度器:从入门到放弃(一) 7月前 评论
任务调度器:从入门到放弃(一)

本文探讨了Linux调度器的运作机制,特别是完全公平调度器(CFS)和实时调度类(RT)的区别,以及控制组(cgroup)如何通过限制资源配额来影响调度结果。文章指出,CFS的优先级代表权重,而非传统意义上的优先级顺序,而cgroup则通过cpu.shares参数来控制资源占比。实验表明,当进程在同一个分组时,其资源占比受到priority权重的影响;当进程在不同分组时,其资源配额受到组的cpu.shares的控制。文章还讨论了cgroup可能带来的问题,如默认资源配额不合理和跨资源group组调用的问题。

【深入内核】linux ftrace详解 7月前 3 条
【深入内核】linux ftrace详解

本文主要介绍了Ftrace(Function Tracer)的概念、实现原理和使用方法。Ftrace是Linux内核自带的轻量级跟踪框架,用于记录内核内部发生的事件与函数调用,帮助开发者洞察系统最深处的执行路径、时序瓶颈与异常行为。文章详细阐述了Ftrace的实现原理,包括静态插桩和动态插桩两种方式,并介绍了Ftrace的开启方法,包括设置tracer类型、设置tracer参数、使能tracer、进行测试和提取trace结果等步骤。此外,文章还介绍了常见的trace event详解和特别注意点,如能够使用adb和开机过程中死机的情况。